

Small size flow sensor FSM2 Series

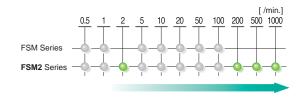
SMALL SIZE FLOW SENSOR FSM2 SERIES

Diverse lineup to meet your needs.

The FSM Series has been added to this new advanced series.

The range has been expanded to 1000 /min. while maintaining outstanding responsiveness.

Usability has been greatly improved with the twin and bicolor indicator that enhances operability and the auto reference function.


Value is further increased with the capability of bidirectional measurement.

Enlarged flow range

2, 200, 500, and 1000 /min. types have been added to conventional flow ranges -- 0.5, 1, 5, 10, 20, 50, and 100 /min.

Large flow yet compact

The volume of the 500 and 1000 /min. types is 1/3 compared to the conventional type, realizing the industry's top class compact size

Equipment is downsized and lightened with this new series.

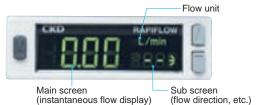
Measure fluids bidirectionally

With the integrated bidirectional display, the flow direction is set in either direction and measured.

This increases the freedom of piping installation and detects backflows.

Refer to page 29 for details.

Accuracy increased by ±3% F.S. or less


 $\pm 3\%$ F.S. accuracy is realized, enabling fluids to be measured more precisely.

Twin indicator/bicolor indicator

With the integrated display, main and subscreens improve operability.

The bicolor display makes it easy to spot problems quickly.

Refer to page 25 for details.

Bar display

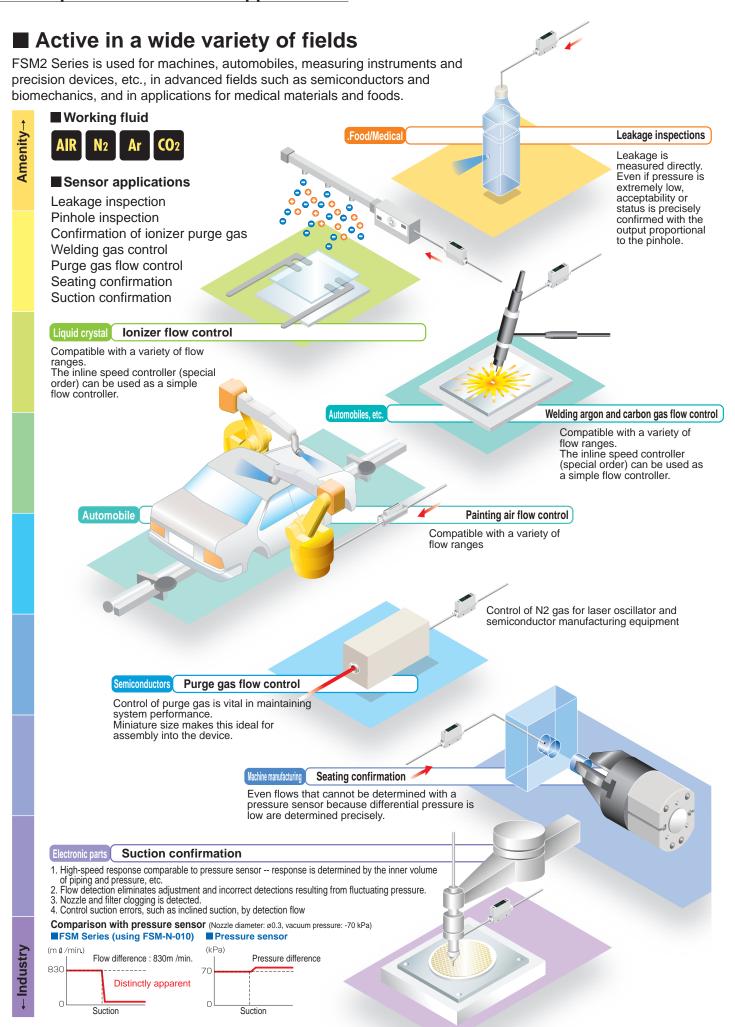
With the separated display, the reference flow is easily grasped with a flow bar display.

Refer to page 25 for details

Auto-reference


Switch output settings are automatically retrieved with buttons and external input, eliminating the need for troublesome settings.

Refer to page 28 for details.


High-speed response of 50 msec. or less

The silicon-micromachined platinum sensor chip realizes high-speed response and shortens tact time.

■ Diverse FSM Series

Examples of FSM2 Series applications

										SN	12	Serie	s							
				A	ir, nit	roger	n gas	appli	catior	าร				Argo	n, car	bon (gas a _l	pplica	tions	
Display integrated type	2-point switch output NPN/PNP 1-point analog output	FSM2-N/P□□005-□	FSM2-N/P□□010-□	FSM2-N/P 020-	FSM2-N/P□□050-□	FSM2-N/P 100-	FSM2-N/P 200-	FSM2-N/P 500-	FSM2-N/P 101-	FSM2-N/P 201-	FSM2-N/P 501-	FSM2-N/P 102-	FSM2-N/P 005- AR/C2	FSM2-N/P 010- AR/C2	FSM2-N/P 020- AR/C2	FSM2-N/P 050- AR/C2	FSM2-N/P 100-AR/C2	FSM2-N/P 200-AR/C2	FSM2-N/P = 500-AR/C2	FSM2-N/P 101- AR/C2
Display separated type	1-point analog output	FSM2-A□□005-□	FSM2-A□□010-□	FSM2-A□□020-□	FSM2-A□□050-□	FSM2-A 100-	FSM2-A 200-	FSM2-A 500-	FSM2-A 101-	FSM2-A 201-	FSM2-A 501-	FSM2-A 102-	FSM2-A 005- AR/C2	FSM2-A 010- AR/C2	FSM2-A 020- AR/C2	FSM2-A 050- AR/C2	FSM2-A 100-AR/C2	FSM2-A 200-AR/C2	FSM2-A□□500-□AR/C2	FSM2-A 101- AR/C2
	Body material Resin body																			
	Stainless steel body		•	•	•	•		•	•	•			•			•	•		•	
	Aluminum body																			
	Port size																			
	ø4 push-in joint		•			•	•													
	ø6 push-in joint							•												
	ø8 push-in joint	-						•												
	ø10 push-in joint																			
	Rc1/8 Rc1/4																		(AR only)	
	Rc1/2																			
	M5 (custom order) Full scale flow																	(AR only)		
	0.5 \(\rho\rho\rho\rho\rho\rho\rho\rho\rho\rho																			
	1																			
	2																			
	5																			
	10					•														
	20						•													
	50						L	•												
	100																			
	200																			
	500																			
	1000																			
					Dis	play i	ntegr	ated 1	vpe					C	Displa	v ser	arate	d typ	е	
	Flow direction	(Select	accordin		Bidire	ctiona onal type	l or sir	ngle di ection ca	rectio	cted by p	ressing a	button.)		Bidi	rectio	nal or	single ding to	e direc	tion	
	Output type				PNP 1-	-point output -point	switcl (Selection (Selection (Sel	n outp	rding t ut		,		1 to	5V or 4		int ana	alog o	utput ccordi	ng to ty	/pe.)

Safety precautions

Always read this section before starting use.

When designing and manufacturing a device using CKD products, the manufacturer is obligated to check that device safety mechanism, pneumatic control circuit, or water control circuit and the system operated by electrical control that controls the devices is secured. It is important to select, use, handle, and maintain the product appropriately to ensure that the CKD product is used safely.

Observe warnings and precautions to ensure device safety. Check that device safety is ensured, and manufacture a safe device.

WARNING

- This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience in handling.
- 2 Use this product in accordance of specifications.

This product must be used within its stated specifications. It must not be modified or machined. This product is intended for use as a general-purpose industrial device or part. It is not intended for use outdoors, under the following conditions or environment. (Note that this product can be used when CKD is consulted prior to use and the customer consents to CKD product specifications. The customer must provide safety measures to avoid risks in the event of problems.)

- Use for special applications requiring safety including nuclear energy, railroad, aviation, ship, vehicle, medical equipment, equipment or applications coming into contact with beverage or food, amusement equipment, emergency shut off circuits, press machine, brake circuits, or for safeguard.
- Use for applications where life or assets could be adversely affected, and special safety measures are required.
- Observe corporate standards and regulations, etc., related to the safety of device design and control, etc.

ISO4414, JIS B8370 (pneumatic system rules)

JFPS2008 (principles for pneumatic cylinder selection and use)

Including High Pressure Gas Maintenance Law, Occupational Safety and Sanitation Laws, other safety rules, body standards and regulations, etc.

- 4 Do not handle, pipe, or remove devices before confirming safety.
 - Inspect and maintain the machine and devices after confirming safety of the entire system related to this product.
 - 2 Note that there may be hot or charged sections even after operation is stopped.
 - When inspecting or servicing the device, turn off the energy source (air supply or water supply), and turn off power to the facility. Discharge any compressed air from the system, and pay enough attention to possible water leakage and leakage of electricity.
 - When starting or restarting a machine or device that incorporates pneumatic components, make sure that the system safety, such as pop-out prevention measures, is secured.
 - Provide a fail-safe mechanism if faults with this product could lead to serious accidents.
- 5 Observe warnings and cautions on the pages below to prevent accidents.
- The safety cautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.

▲ ▶ DANGER: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, or when there is a high degree of emergency to a warning.

WARNING: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries.

A CAUTION: When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Note that some items described as "CAUTION" may lead to serious results depending on the situation. In any case, important information that must be observed is explained.

Disclaimer

- 1. CKD cannot be held liable for any business interruption, loss of profit, personal injury, delay cost, or any other ancillary or indirect loss, cost, or damage resulting from the use of or faults in the use of CKD products.
- 2. CKD cannot be held responsible for the following damage:
 - (1) Damage resulting from disaster or failure of CKD parts due to fire from reasons not attributable to CKD, or by intentional or negligence of a third party or customer.
 - (2) When a CKD product is assembled into customer equipment, damage that could have been avoided if customer equipment were provided with functions and structure, etc., generally accepted in the industry.
 - (3) Damage resulting from use exceeding the scope of specifications provided in CKD catalogs or instruction manuals, etc., or from actions not following precautions for installation, adjustment, or maintenance, etc.
 - (4) Damage resulting from product modifications not approved by CKD, or from faults due to combination with other software or other connected devices.

To secure safety

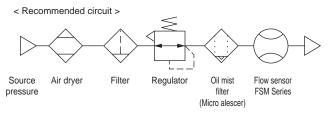
Pneumatic components: warning, cautions

Always read this section before starting use.

Small size flow sensor FSM2 Series

Design & Selection

Working fluid


ADANGER

■ Do not use this product with flammable fluids.

WARNING

- This product cannot be used as a business meter.

 This product does not conform to measurement laws, and cannot be used for commercial purposes. Use this sensor for factory applications.
- Do not use fluids other than the applicable fluid because accuracy cannot be guaranteed.
- Compressed air from the compressor contains drainage (water, oxidized oil, foreign substances, etc.), so install a filter, air dryer, and oil mist filter (micro alescer) on the primary side (upstream) of the sensor. The sensor's mesh rectifies the flow in the pipe. It is not a filter for removing foreign substances, so provide a filter.

- When using a valve on the primary side of this product, use only an oil-prohibit specification valve. This sensor could malfunction or fail if exposed to splattering grease, oil, etc.
- When this product is used for liquefied gas such as carbon dioxide, evaporate gas. This product could fail if processing liquefied gas.

Working Environment

ADANGER

■ Flammable environment

Do not use this product in an explosive gas environment. The structure is not explosion-proof, and explosions or fires could occur.

AWARNING

- Corrosive environment

 Do not use this product in an environment containing corrosive gases such as sulfurous acid.
- Ambient temperature, fluid temperature
 Keep the ambient temperature and fluid temperature within 0
 to 50°C. Even if the temperature is within the specified range,
 do not use it if the ambient temperature and fluid temperature
 could suddenly change and cause dew to condense.
- Maximum working pressure and working flow rate range Use this product within the specified range, because use exceeding the maximum working pressure and working flow rate range could result in failure.
- Drip-proof environment

 This product's protective structure is IP40 or equivalent. Do not install it where it could be exposed to water, salt, dust, or cutting chips, or a compressed or decompressed environment. This product cannot be used where the temperature changes sharply or in a highly humid environment where internal damage could be caused by dew condensation.

Flow unit

ACAUTION

■ This product's flow rate is measured at a mass flow unaffected by temperature or pressure. The unit is ℓ/min., but this is the display when the mass flow is converted to volumetric flow at 20°C 1 barometric pressure (101 kPa).

Withstand pressure

ACAUTION

■ Withstand pressure differs for each series. Note this when selecting the series.

Overflow

ACAUTION

■ With each series, no problem will occur in the sensor, even in an overflow double the measurement range. If dynamic pressure is applied near the maximum working pressure (when a pressure difference exceeding the maximum working pressure is applied between primary and secondary sides), a problem could occur with the sensor. If dynamic pressure is applied, such as when a workpiece is filled for leakage inspection, provide a bypass circuit or restrictor so that dynamic pressure is not applied to the sensor.

Use for vacuum confirmation, etc.

ACAUTION

- When this product is used to confirm vacuum, etc., select the flow range based on the working vacuum pressure and vacuum nozzle. Refer to "Methods for calculating theoretic flow" on page 32 for details.
- When this product is used to confirm vacuum, etc., provide an air filter (filtration 10 µm or less) upstream from suction to prevent the entry of foreign matter.
- When this product is used to confirm vacuum, etc., consider the atmospheric dew point and this product's ambient temperature, and use under conditions in which dew does not condense in pipes.
- When this product is used to confirm vacuum, etc., response speed may be delayed by the capacity of the pipe between the vacuum nozzle and this product. In this case, take measures to reduce piping capacity.
- When this product is used for vacuum applications such as air supply, do not bend the tube near the push in joint. If stress is applied to the tube near the

- push in joint, insert an insert ring into the tube, and connect the tube to the push in joint.
- When the vacuum confirmation sensor is switched from a pressure sensor (switch) to a flow sensor (switch), sensor output (switch output) logic will be reversed. See the drawing below.

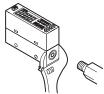
Note that the PLC sequence program must be changed or revised.

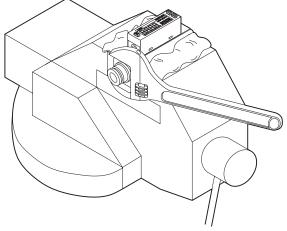
If source pressure or vacuum source is not supplied when device power is turned on, "flow 0" = "sensor output (switch output) on" status is set at the flow sensor (switch). Check that this is not a problem with the PLC sequence program, etc.

	Pressure sen	sor (switch)	Flow se	nsor (switch)
	ON at setpoi	nt and over	ON at se	etpoint or less
Suction confirmation	Atmospheric pressure side	ON OFF High vacuum side	Flow 0 side	OFF Large flow rate side

Installation & Adjustment

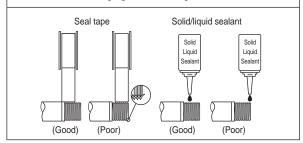
Piping


ACAUTION


- Complete piping and installation before starting wiring.
- When piping, check that the fluid's direction matches the direction indicated on the component.
- When installing the sensor on piping, see the torque below so that excessive screw-in torque or load torque is not applied to the connection port.

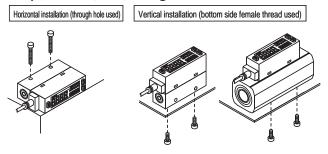
(Reference value)

Port thread	Tightening torque N•m
M5	0.5 to 1.0
Rc1/8(G1/8)	3 to 5
Rc1/4	6 to 8
Rc1/2	16 to 18


- Clean out pipe with air blow to remove foreign substances, swarf, etc., before piping. The rectifier or sensor chip could be damaged if a large amount of foreign matter, swarf, etc., occurs.
- Attach a wrench to metal sections when tightening pipes so that pressure is not applied to the resin section.

■ Check that sealing tape or adhesive does not get inside during piping.

When winding fluorine resin sealing tape around threads, wind sealing tape once or twice, leaving two to three threads open at the end of the screw. Press tape with a nail tip to stick it onto threads. When using liquid sealing agent, leave one to two threads open from the end, and avoid applying too much. Check that the sealing agent does not get on device threads.


Installation & Adjustment

- Connect a joint even when using the metal body type with the out side opened. The port filter could come off.
- When using a push in joint, accurately insert tube and confirm that it does not become dislocated even when pulled. Cut tube at a right angle with a dedicated cutter before use.

Installation

ACAUTION

- The integrated display flow meter has an LCD display. It may be difficult to read depending on the angle.
- This product can be installed in any direction; top, bottom, left, or right.

Bracket installation (special bracket used)

Port size: Push-in 4, 6, 8, 10
Rc1/8, Rc1/4, M5
Discrete bracket model no.: FSM2-LB1

Port size: Rc1/2 Discrete bracket model no.: FSM2-LB2

Wiring

ADANGER

■ Use power voltage and output within the specified voltage.

If voltage exceeding the specified voltage is applied, the sensor could malfunction or be damaged, or electrical shock or fire could occur.

Do not use a load exceeding the output rating. Failure to observe this could result in output damage or fire.

₩ARNING

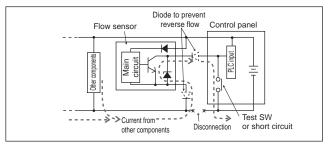
- Check wire colors when wiring. Incorrect connections could result in sensor damage, problems, and malfunctions, so check wire colors against the instruction manual before wiring.
- Check wiring insulation.
 Check that lines do not contact other circuits, and that no ground faults or insulation faults occur across terminals.
 An over current could flow in and damage the sensor.

- Use a DC stabilized power supply, within the specified rating, insulated from the AC power supply. Failure to insulate the power supply could result in electrical shock. If power is not stabilized, the peak value could be exceeded. This could damage the product or impair accuracy.
- Attach a connector cover after connecting connectors.
- Check that stress is not directly applied to cable leadout or connector sections.
- Stop the control device and machine devices, and turn the power off before wiring. Starting operation suddenly could result in unpredictable operation and hazards. Conduct an energized test with control devices and machine devices stopped, and set target switch data. Discharge electrostatic accumulated in personnel or tools before and during work. Connect and wire bend-resistant material, such as robot wire material, for movable sections.
- Do not use this product at levels exceeding the power voltage range. If voltage exceeding this range is applied or if AC power is applied, the controller could rupture or burn
- Separate this product and its wiring as far away as possible from sources of noise such as high-voltage lines. Provide separate measures for surge applied to the power cable. The display or output could fluctuate.
- Do not short-circuit the load. This product could rupture or burn.
- For metal body (stainless steel, aluminum) power supplies, use DC-stabilized power separated from the AC primary side. Connect either the plus or minus side of the power supply to the F.G. A varistor (limit voltage 40 V) is connected between the metal body internal power circuit and metal body to prevent dielectric breakdown of the sensor. Do not conduct a withstand voltage test or insulation resistance test between the internal power circuit and metal body. Disconnect wiring if this testing is required. An excessive potential difference between power and metal body will burn internal parts. After installation, connecting and wiring the metal body, electrical welding of the device or frame, or short-circuit accidents, etc., could cause welding current, excessive high voltage caused by welding, or surge voltage, etc., to run through wiring or ground line connected between such devices, damaging lines or devices. Conduct work such as electrical welding after removing this device and disconnecting all electric lines connected to the F.G.

Adjustment

ACAUTION

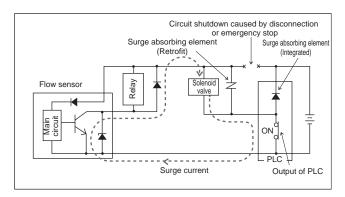
■ If switches are operated when flow is not stable, such as pulsating, operation may be unstable. In this case, provide sufficient margin between the two setting values and avoid setting switches in an unstable area. Confirm that switch operation is stable before use.


During Use & Maintenance

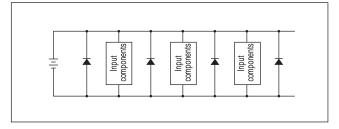
WARNING

- Output accuracy is affected by temperature characteristics and heat generated when energized. Provide standby time of five minutes or more after turning power on when using.
- This product does not use flow control for four seconds after power is turned on to complete self-diagnostics. Provide a control circuit and program that ignore signals for four seconds after power is turned on.

ACAUTION


- If a problem occurs during operation, immediately turn power off, stop use, and contact your dealer.
- Keep this product's flow within the rated flow range.
- Use this product within the working pressure range.
- If the output setting value is changed, control system devices could operate unintentionally. Stop devices before changing settings.
- Regularly inspect the product at least once a year or more, and confirm that it is operating correctly.
- Do not disassemble or modify this product. Doing so could result in faults.
- This case is made of resin. Do not use solvent, alcohol or detergent to remove any dirt, etc., as the resin could be impregnated. Wipe off any dirt with a rag soaked in a diluted neutral detergent solution and wrung out well.
- Check backflow currents caused by broken wiring or wiring resistance. If other devices, including a flow sensor, are connected to the same power as the flow sensor, and the switch output wire and power line's minus side are temporarily short circuited to check the operation of the control panel's input unit, or if the power line's minus side is broken, a backflow current could flow to and damage the flow sensor switch output circuit.

- Take the following measures to prevent damage from backflow current.
 - Avoid concentrating power lines, and especially current to power lines on the minus side. Use lines as thick as possible.
 - ② Limit the number of devices connected to the same power source as the flow sensor.
 - ③ Insert a diode parallel to the flow sensor's output line to prevent current backflow.
 - ④ Insert a diode parallel to the flow sensor power line's minus side to prevent current backflow.


■ Pay attention to leading of the surge current.

When the flow sensor's power is shared with an inductive load that generates a surge, such as a solenoid valve or relay, if the circuit is cut off while the inductive load is functioning, the surge current could enter the output circuit and cause damage, depending on where the surge absorption element is installed.

Take countermeasures as followings to prevent damage caused by surge current leading.

- ① Separate the power supply for output including the inductive load, such as the solenoid valve and relay, and input, such as the flow controller.
- ② If power supplies cannot be separated, directly install a surge absorption element for all inductive loads. Note that the surge absorption element connected to the PLC, etc., protects only that device.
- ③ Connect a surge absorption element on power lines, as shown below, prepare against disconnections in unspecified areas.

When devices are connected to a connector, the output circuit could be damaged by the above occurrence if the connector is disconnected while power is on. Turn power off before connecting or disconnecting the connector.

- Even if the flow range is exceeded, analog output will continue. If an integrated display is used, "Hi" or "Lo" is displayed. When using a separate display, the bar display will blink.
 - Note that this is outside guaranteed precision.
- When an integrated display, do not press the display section. It could be damaged.

Miniature inline filter FSM-VFM series

During Use & Maintenance

ACAUTION

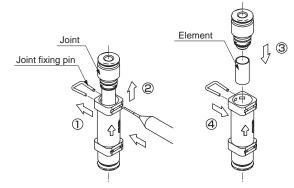
■ Do not use this product for vacuum circuits that could come in contact with acids, alkalines, carboxlyic acid, other organic compounds, screw-lock agent, solvent, or alcohol solutions, or air containing these substances.

The body could be damaged, and cause a hazardous situation.

- Use designated tubing and plastic plugs.
 - Tube outer diameter precision

● CKD recommended model

Plastic plug GWP*-B Series
Soft nylon tube F15** Series
Polyurethane rubber tube U95** Series
Urethane tube NU-04, 06 Series


- Refer to the "Pneumatic, Vacuum and Auxiliary Components" No. CB-24SA "Precautions for joints and tubes" for precautions for the push in joint.
- Regularly inspect the polyamide case for cracks, damage, and other deterioration. Clean and replace as necessary.
- Filter element clogging will decrease vacuum source conductance. Regularly inspect, clean, and replace the element.
- Return the container to atmospheric pressure before removing the body to clean or replace, etc., the filter element.

The flow direction is oriented. Check the arrow on the body during reassembly.

- Check that the required vacuum degree is attained in the circuit after reassembly.
- Use a household-grade neutral detergent to clean the body, then rinse with water.

Replacing the element

CAUTION

- ① Pull out the joint fixing pin using a blunt jig, etc.
 The joint fixing pin must reused, so do not lose it.
- 2 Pull out the joint.
- ③ Replace the element, and insert the joint.
- 4 Insert the joint fixing pin, and fix the joint.

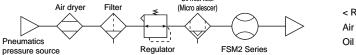
Small size flow sensor Display integrated type/display separate type

FSM2 Series

- ●Resin body type (flow range: 500 ml/min. to 200 l/min.)
- ●Aluminum body type (flow range: 500 l/min., 1000 l/min.)
- Stainless steel body type (flow range: 500 ml/min. to 200 l/min.) RoHS

Display integrated type (resin/aluminum body type) specifications

Des	scriptic	ons					Dis	play in F		ed type (*1) (*2)				ody)			
				Full sca	le flow	,	005	010	020	050	100	200	500	101	201	501	102
			005	500 mℓ/m	nin.		•										
			010	1 ℓ/min.				•									
			020	2 ℓ/min.					•					101 201 101 201 101 201 101 201 101 201 102 201 102 202 103 200 103 200 104 200 100.0 200 100.0 200 100.0 1			
			050	5 ℓ/min.						•							
Elev	w range		100	10 ℓ/min.							•						
	w range lote 1	*4	200	20 ℓ/min.								•					
	1010 1		500	50 ℓ/min.									•				
			101	100 ℓ/mir										•			
			201	200 ℓ/mir											•		
			501	500 ℓ/mir												•	<u> </u>
			102	1000 ℓ/m												-	•
	D		H04 H06	Φ4 push-			•	•	•	•	•	•	•				-
	Port e/body	*5	H06	Φ6 push- Φ8 push-	_	_	•	_	_	_	•	•	•				+
	aterial	3	H10	Φ10 push									_	_			
	attriai		A15	Rc1/2, ali										_		•	•
			AIS	Type of d		-				4 (ligits + 4	digits 2	color I	CD			
				Турсого	Topicy	T	0 to 500	0 to 1000	0 to 2.00	1	0 to 10.00				0 to 200	0 to 500	0 to 1000
				l		F	mℓ/min.	mℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.			ℓ/min.	ℓ/min.
Flov	w display			Display	*3		-500 to	-1000 to	-2.00 to	-5.00 to	-10.00 to	-20.0 to	-50.0 to			-500 to	-1000 to
				range		R	500	1000	2.00	5.00	10.00	20.0	50.0			500	1000
							mℓ/min.	mℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.
				Display r	esolutio	on	1 mℓ	/min.	C).01 ℓ/mir	١.		0.1 ℓ/min			1 ℓ/min.	
				Display r	ange		99999	99 mℓ	ő	9999.99	e	9	99999.9	e		9999999	e
Inte	gration			Display r	esolutio	on	1r	nℓ		0.01ℓ			0.1ℓ			1€	
				Pulse ou	tput rat	е	5 mℓ	10 mℓ	0.02 ℓ	0.05 €	0.1 ℓ	0.2 ℓ	0.5 €			5 €	10 €
ons	Working					Note 2	Clean	air (JIS B	8392-1.1	l.1 to 5.6.	2), comp		ir (JIS B	8392-1.1.	1 to 1.6.	2) , nitro	gen gas
Ē	Max. wo											0.7MPa					
8	Min. wo	_										-0.09MPa	3				
gui	Withstar						-				0 40 E0°	1MPa					
Working conditions	Working			e/humidity	<u>′</u>		-										
-			<u>-</u> _	guarantee	-		 			0 10 31		o 100% F		sationi			-
o				nd analog	output)				+3% F	S or less				release	25°C)		
Precision	Pressure		<u> </u>		Juipui,		+5% F	S. or les			_•					heric rel	lease)
ē	Tempera																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
۵	Repeata											F.S. or				<u>'</u>	
Res	ponse tir					Note 3					50	ms or le	ss				
	Switch :				*1	N											
Output	Switch o	utp	и .			Р	2										s)
ő	Analog	outn	ut		*2	٧					<u> </u>			<u> </u>			
	,a. e g				<u> </u>	Α		4 to 20	mA curr						ince 0 to	300Ω)	
Pow	ver voltag	je N	ote 4		*2	V	-			1	2 to 24 V			/)			
						A Note 6						(21.6 to					
	rent cons	sum	วเเอท			Note 6	-		7 0000	6 04 000	-	mA or le		nnoctor		\ \	
	d wire ctions						Φ3.7 AWG26 or equivalent x 5-conductor (connector connection)										
· un	5115113	Ine	allation	attitude			Flow display, flow display peak hold, switch output, analog output, etc. Free										
Inst	allation			ing section Not required													
Prof	tective st			9 00000011	-							tandard					
	tective ci					Note 5	Power rev	erse connec	tion protect	tion, switch				on, switch o	utput load	short-circuit	protection
	directiv											rming p					
						H04						50g					
						H06						50g					
Wei	ght				*5	H08						70g					
						H10 A15						75g					



Display integrated type (stainless steel body type) specifications

De	scriptio	ons					Disp						/)		
				Full sca	le flow	,	005	010	020	050	100	200	500	101	201
		1	005	500 ml/n				010	020	030	100	200	300	101	201
			010	1 €/min.											
			020	2 ℓ/min.		Second S									
			050	5 €/min.						•					
	w range	*4	100	10 ℓ/min.							•				
ľ	lote 1		200	20 ℓ/min.								•			
			500	50 ℓ/min.									•		
			101	100 ℓ/mii	n.									•	
			201	200 ℓ/mii	n.	_									•
			S06	Rc1/8 sta	ainless	steel	•	•	•	•	•	•			
siz	Port e/body	*5	S08	Rc1/4 sta	ainless	steel							•	•	Air only
m	aterial		SM5	M5 stain (Custom		el	•	•	•	•	•	(No carbon dioxide)			
				Type of c				1		4 digits +	4 digits 2)		
				Туро от с	lopidy		0 to 500	0 to 1000					1	0 to 100.0	0 to 200
				Display		F						l	1		ℓ/min.
Flo	w display	'		range	*3	_	-500 to 500	-1000 to 1000	-2.00 to 2.00	-5.00 to 5.00	-10.00 to 10.00	-20.0 to 20.0	-50.0 to 50.0	-100.0 to 100.0	-200 to 200
						K	mℓ/min.	mℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.	ℓ/min.
				Display r	resoluti	on	1 m{	/min.		0.01 ℓ/min			0.1 ℓ/min.		1 ℓ/min.
				Display r			99999	99 mℓ		99999.99 (2		999999.9 (2	9999999 ℓ
Into	arotion			Display r	resoluti	on	1	mℓ		0.01 ℓ			0.1 ℓ		1 ℓ
inte	gration			Pulse ou	tput rat	е	5 mℓ	10 mℓ	0.02 €	0.05 ℓ	0.1 €	0.2 ℓ	0.5 ℓ	1 €	2 ℓ
s		<i>.</i>				Blank	Clean air	, (JIS B 839	2-1.1.1 to	5.6.2), com	pressed ai	r (JIS B 83	92-1.1.1 to	1.6.2) , nitr	ogen gas
conditions	Working Note 2	j flui	d		*6	AR					Argon				
dit	Note 2					C2				Ca	ırbon dioxi	de			
ő	Max. wo										1.0MPa				
β	Min. wo														
Working	Withsta		•												
Š			<u> </u>	re/humidity	/				0.44				:1		
	Working			guarantee					0 10		to 100% F.		ion)		
u				ind analog	output)				8% ES or				elease, 25°	C)	
Precision	Pressur				output)		+5% F.S							ospheric r	elease)
Je C				cteristics			10701.0						C is refere		cicase j
Δ.	Repeata										% F.S. or le			,	
Res	ponse ti	ne	-			Note 3				5	0ms or les	s			
+	Switch	\114×	ut		*1	N	2 o	utputs (NP	N open co	llector out	put, 50mA	or less, v	oltage dro	p 2.4V or le	ess)
nd	Switch	Julp	uı		<u>'</u>	Р	2 0	utputs (PN	P open co	llector out	put, 50mA	or less, vo	oltage drop	2.4 V or le	ess)
Output	Analog	outp	ut		*2	V A			<u> </u>			<u>.</u>		Ω or more 0 to 300Ω)	
Pov	ver voltag	ae N	ote 4		*2	٧		- 10 201151		12 to 24	VDC (10.8	to 26.4V)	poddiioo	0 10 00011)	
						A					C (21.6 to				
	rent cons	sum	ption			Note 6		4074	14/000		0mA or les				
	d wire							,	,				ector conn		
run	ctions	Inc	tallatio	n attitude				riow aisp	1ay, 110W 0	ispiay pea	Free	iten outpu	i, analog 0	utput, etc.	
Inst	allation			ng section							lot require	d			
Pro	tective st			5 00000011							standards				
	tective c					Note 5	Power revers	se connection i	protection, swi				switch output	load short-circ	uit protection
	C directiv										orming pro				
						S06					95g				
Wei	ght				*5	S08					115g				
	-				1		1								

Note 1: Converted to volumetric flow at 20°C 1 barometric pressure (101 kPa)

Note 2: When using compressed air, use clean air that complies to JIS B 8392-1:2003 Class 1.1.1 to 1.6.2. Compressed air from the compressor contains drainage (water, oxidized oil, foreign matter, etc.). Install a filter (filtration: 5 µm), air dryer (minimum pressure dew point: 10°C or colder), and oil mist filter (maximum oil concentration: 0.1 mg/m³) on the primary side of this product to maintain product functions. (Recommended circuit)

SM5

< Recommended component >

140g

Air filter: F Series
Oil mist filter: M Series

When using for other than compressed air, use dry gas that does not contain corrosive elements such as chlorine, sulfur, or acids, and clean gas that does not contain dust or oil mist.

Note 3: Response time is set in seven stages from 50 ms or less to 1.5 s.

Note 4: Power voltage specifications differ for the voltage output and current output.

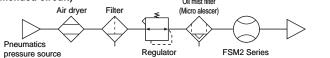
Note 5: This product's protection circuit is effective only for specific misconnections and load short-circuits. It does not provide protection for all misconnections.

Note 6: Current for 24 VDC connection with no load connected. Consumed current varies with the load connection.

FSM2 Series

Display separate type (resin/aluminum body type) specifications

De	scriptio	ons					Dis	splay s	eparat FSM2-		(resin/ (*2) (*3		um bo	dy)			
				Full so	ale flow		005	010	020	050	100	200	500	101	201	501	102
			005	500 m	ℓ/min.		•										
			010	1 ℓ/mi	n.			•									
			020	2 ℓ/mi	n.				•								
			050	5 ℓ/mii	n.					•							
	Flow		100	10 ℓ/m	in.						•						
r	ange	*3	200	20 ℓ/m	in.							•	ĺ			İ	
N	lote 1		500	50 ℓ/m	in.								•				
			101	100 €/1	min.									•			
			201	200 €/1	min.										•		
			501	500 €/1	min.											•	
			102	1000 €	/min.												•
			H04	Ф4 ри	sh-in/res	sin											
	Port		H06	Ф6 ри	sh-in/res	sin	•	•	•	•	•	•	•				
siz	e/body	*4	H08	Ф8 ри	sh-in/res	sin							•	•	•		
m	aterial		H10	Ф10 р	ush-in/re	esin								•	•		
			A15	Rc1/2,	aluminu	ım										•	•
Flo	w direct	ion			*2	F					Uni	direction	onal				
	w direct	.1011				R						directio					
Suc	Workin	g fl	uid		,	Note 2	Clean a	air (JIS B	8392-1.1	.1 to 5.6	.2), comp	ressed a	ir (JIS B	8392-1.1	.1 to 1.6.	2) , nitro	gen gas
Working conditions	Max. w											0.7MPa	l .				
con	Min. wo									-	-	0.09MP	а				
ing	Withsta											1MPa					
ş				ture/hui							to 50°C						
_				peratur						0 to 50°	C (with			nsation)	-	
5				of guara		1			00/ 50			100%			050	0)	
Sic				and an eristics	alog out	put)	. E0/ E		3% F.S.								
Precision				acteris	ice		±3% F.		s (-0.09 t 2% F.S./								elease)
ď	Repeat			acteris	1103			±0.	2 /0 1 .3./	0 01 10		F.S. or		25 0 18	reletel	100)	
Res	sponse											ms or le				-	
	e of dis											bar di					
						V		1 to 5V	voltage	1 outp				edance	50kΩ (or more)
O	utput	An	alog οι	itput	*1	Α			mA curi								
D = 1			Nata 2		+4	V				12	to 24 V	DC (10.	8 to 26.	4V)			
Pov	wer volt	age	Note 3		*1	Α					24 VDC	(21.6 to	26.4V))			
Cui	rrent co	nsu	mption			Note 5					50	mA or l	ess				
Lea	ad wire								Ф3.7 АУ)	
Fur	nctions								Ana	log out	put, flov	v bar di	splay, e	rror dis	play		
Inst	tallation	_		n attitu								Free					
_				ng sect	ion		-					t requi					
	tective					Mate 4				Davis		andard		.4			
_	tective	_	uit			Note 4				Power	reverse			otection	1		
	C direct	ive				H04					Conto	rming p	oduct			-	
						H04						40g 40g					
Wo	ight				*4	H08		-				60g					
446	.9.11				-	H10						65g	-			-	
						A15						145g					
						170											


San Palatatata

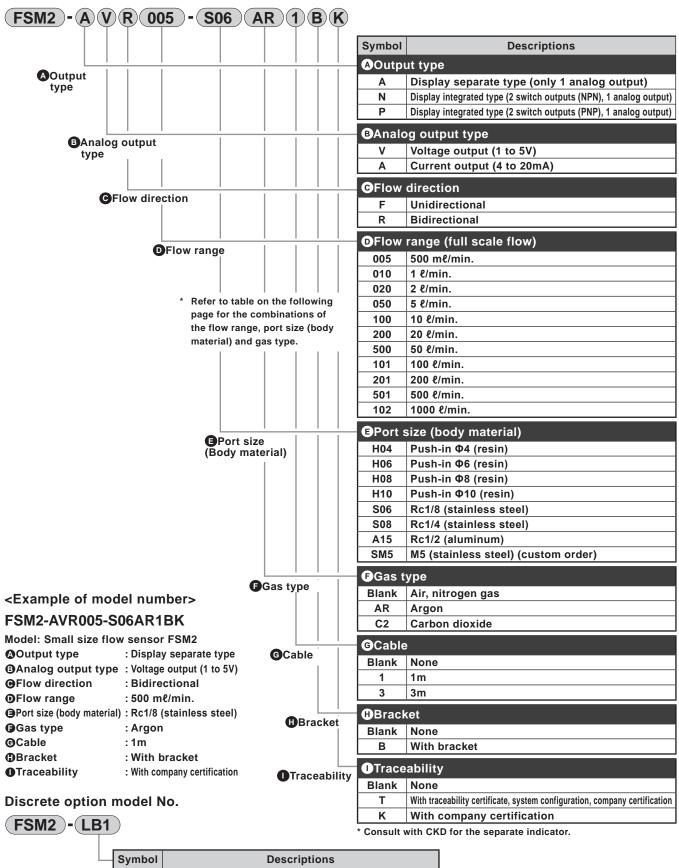
Display separate type (stainless steel body type) specifications

De	scriptio	ons					Sep			ay (stain (*2) (*3)		el body) 5)				
				Full so	ale flo	w	005	010	020	050	100	200	500	101	201	
			005	500 m	e/min.		•									
			010	1 ℓ/mi				•								
			020	2 ℓ/mii					•							
	Flow		050	5 €/mii						•					+	
	ange	*3	100	10 ℓ/m							•				+	
	lote 1		200	20 ℓ/m								•			+	
			500	50 ℓ/m									•		+	
			101	100 €/1										•		
			201	200 €/1											•	
			201	200 (/1												
	Port		S06	Rc1/8	stainle	ss steel	•	•	•	•	•	•	(No carbon dioxide)			
siz	e/body aterial	*4	S08	Rc1/4	stainle	ss steel							•	•	Air only	
			SM5		inless om orde		•	•	•	•	•	(No carbon dioxide)				
Г	!! 4				*0	F	Unidirectional									
FIO	w direct	lion			*2	R	Bidirectional									
S		-,				Blank	Clean air	(JIS B 8392	2-1.1.1 to 5	5.6.2), com	oressed a	r (JIS B 83	92-1.1.1 to	l.6.2) , ni	trogen gas	
ion	Workin Note 2	g fli	nia		*5	AR					Argon					
dit	NOTE 2					C2				Cai	arbon dioxide					
Working conditions	Max. w	orki	ng pre	ssure			2 Carbon dioxide 1.0MPa									
g	Min. wo	orkii	ng pres	sure							-0.09MPa	1				
kin	Withsta	andi	ng pre	ssure	_						1.5MPa					
Vor				ture/hur								H or less				
_				peratur					0 to 5			condens	ation)			
u				of guara							o 100% l					
Precision	Lineari				alog ou	ıtput)							release, 2			
eci	Pressu						±5% F.S.								c release)	
P	Tempe			acterist	iics			±0.2% l	F.S./°C or				5°C is refe	rence)		
	Repeat										6 F.S. or Ims or le					
	sponse				-											
ТУР	e of dis	piay	<u>'</u>		1	٧	1.	to EV volt	200 1 011		v bar dis	<u> </u>	dance 50k	O or me	201	
0	utput	An	alog οι	ıtput	*1	A							pedance			
						V	7	to Zonia				to 26.4V	-	0 10 000	,,,,	
Pov	wer volt	age	Note 3		*1	A					2 (21.6 to		,			
Cur	rrent co	nsu	mption			Note 5					mA or le					
	ad wire							Ф3.7	AWG26				r (connec	tor)		
	d wire Φ3.7 AWG26 or equivalent x 4-conductor (connector) Analog output, flow bar display, error display															
	allatian	Ins	tallatio	n attitu	de	-					Free	1 2/				
mst	tallation	Str	ait pipi	ng sect	ion					N	ot requir	ed				
Protective structure										IEC s	tandard	s IP40				
						Note 4	•									
EM	EMC directive									Confo	rming p	roduct				
S06 85g																
We	ight				*4	S08					105g					
						SM5					130g					

Note 1: Converted to volumetric flow at 20 $^{\circ}\text{C}$ 1 barometric pressure (101 kPa)

Note 2: When using compressed air, use clean air that complies to JIS B 8392-1:2003 Class 1.1.1 to 1.6.2. Compressed air from the compressor contains drainage (water, oxidized oil, foreign matter, etc.). Install a filter (filtration: 5 μm), air dryer (minimum pressure dew point: 10°C or colder), and oil mist filter (maximum oil concentration: 0.1 mg/m³) on the primary side of this product to maintain product functions. (Recommended circuit)

< Recommended component >


Air filter: F Series
Oil mist filter: M Series

When using for other than compressed air, use dry gas that does not contain corrosive elements such as chlorine, sulfur, or acids, and clean gas that does not contain dust or oil mist.

- Note 3: Power voltage specifications differ for voltage output and current output.
- Note 4: This product's protection circuit is effective only for specific misconnections and load short-circuits. It does not provide protection for all misconnections.
- Note 5: Current for 24 VDC connection with no load connected. Consumed current varies with the load connection.

FSM2 Series

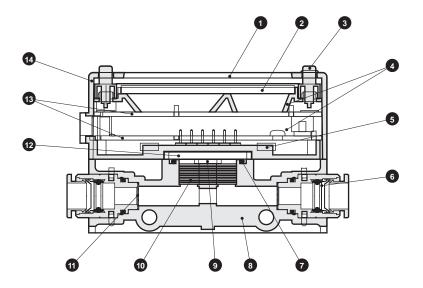
How to order

_	Symbol	Descriptions
	LB1	Bracket (Ф4, Ф6, Ф8, Ф10, Rc1/8, Rc1/4, M5)
	LB2	Bracket (Rc1/2)
	C51	Cable for display integrated type 1 m
	C53	Cable for display integrated type 3 m
	C41	Cable for display separate type 1 m
	C43	Cable for display separate type 3 m

● Combinations of flow range, port size (body material), gas type

				3 P	ort size (l	oody mate	erial)		
		H04	H06	H08	H10	S06	S08	A15	SM5
	005	•	•			●OA			\bullet O Δ
	010					\bullet O Δ			\bullet O \triangle
	020					\bullet O Δ			$\bullet \circ \triangle$
ge	050		•			●O∆			
ran	100	•	•			●O∆			
Flow range	200					\bullet O Δ			•0
풑	500					•0	\bullet O \triangle		
Θ	101			•	•		\bullet O \triangle		
	201								
	501								
	102								

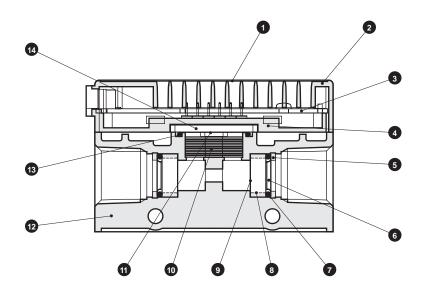
Gas type


: Air, nitrogen gas

O : Argon

∴ Carbon dioxide : Not available

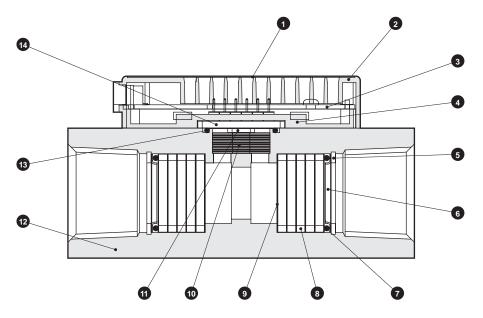
Internal structure and parts list


● Display integrated type, resin body, port size: push-in Φ6

Main parts list

No.	Parts name	Material	No.	Parts name	Material
1	Liquid crystal guard	Acryl resin	8	Resin body	Polyamide resin
2	Liquid crystal	-	9	Sensor chip	Semiconductor chip
3	Switch	EPDM	10	Rectification plate	Stainless steel
4	Circuit board spacer	Polycarbonate resin	11	Port filter	Stainless steel
5	Module holder	Polyamide resin	12	Sensor circuit board	Almina
6	Push-in joint	-	13	Electronic circuit board	-
7	Sensor gasket	Fluoro rubber	14	Case	ABS resin

● Display separate type Stainless steel body Port size : Rc1/4

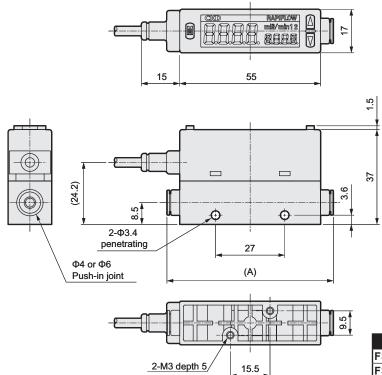


Main parts list

No.	Parts name	Material	No.	Parts name	Material
1	Front seat	PET film	8	Spacer	Stainless steel
2	Case	ABS resin	9	Port filter	Stainless steel
3	Electronic circuit board	-	10	Rectification plate	Stainless steel
4	Module holder	Polyamide resin	11	Sensor chip	Semiconductor chip
5	C ring	Stainless steel	12	Stainless steel body	Stainless steel
6	O ring holder	Stainless steel	13	Sensor gasket	Fluoro rubber
7	O ring	Fluoro rubber	14	Sensor circuit board	Almina

Internal structure and parts list

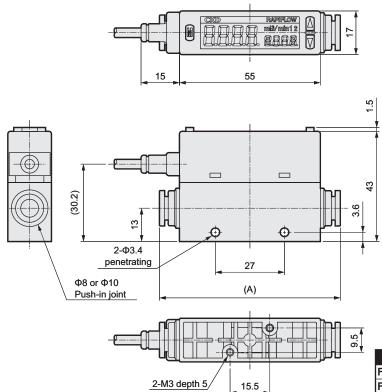
● Display separate type, aluminum body, port size: Rc1/2


Main parts list

man	i parto not				
No.	Parts name	Material	No.	Parts name	Material
1	Front seat	PET film	8	Spacer	Aluminum
2	Case	ABS resin	9	Port filter	Stainless steel
3	Electronic circuit board	-	10	Rectification plate	Stainless steel
4	Module holder	Polyamide resin	11	Sensor chip	Semiconductor chip
5	C ring	Stainless steel	12	Aluminum body	Aluminum
6	O ring holder	Stainless steel	13	Sensor gasket	Fluoro rubber
7	O ring	Fluoro rubber	14	Sensor circuit board	Almina

Dimensions (display integrated type)

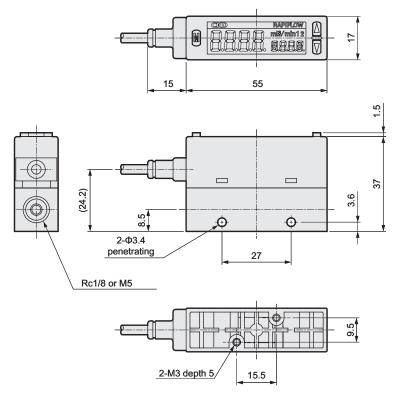
Display integrated type, port size: Push-in Φ4, Φ6


● FSM2-N/P*-H04/H06* (full scale flow: 0.5, 1, 2, 5, 10, 20, 50 ℓ/min.)

Model No.	Joint	(A) dimensions
FSM2-N/P*-H04*	Push-in Φ4	64
FSM2-N/P*-H06*	Push-in Φ6	65

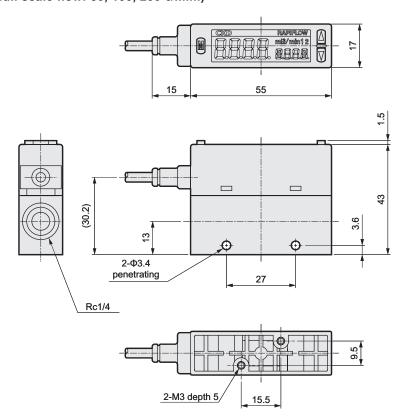
Display integrated type, port size: Push-in Φ8, Φ10

●FSM2-N/P*-H08/H10* (full scale flow: 50, 100, 200 ℓ/min.)


Model No.	Joint	(A) dimensions
	Push-in Ф8	70.6
FSM2-N/P*-H10*	Push-in Φ10	82.1

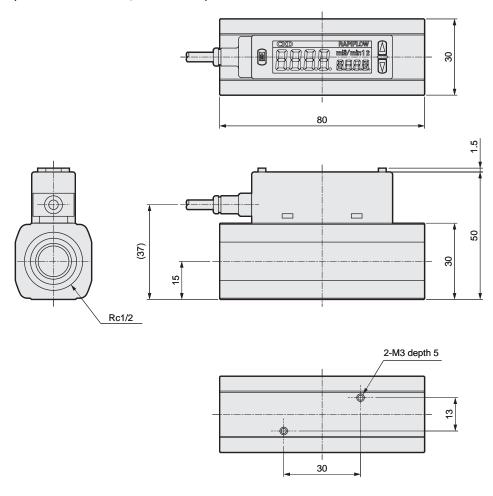
Dimensions

Dimensions (display integrated type)


Display integrated type, port size: Rc1/8, M5

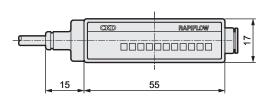
● FSM2-N/P*-S06/SM5* (full scale flow: 0.5, 1, 2, 5, 10, 20, 50 ℓ/min.)

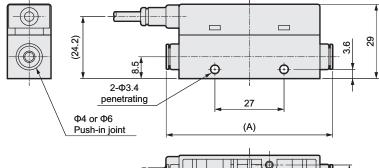
Display integrated type, port size: Rc1/4

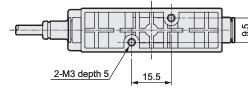

● FSM2-N/P*-S08* (full scale flow: 50, 100, 200 ℓ/min.)

Dimensions (display integrated type)

Display integrated type, port size: Rc1/2

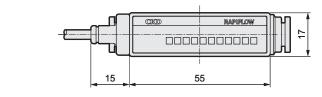

● FSM2-N/P*-A15* (full scale flow: 500, 1000 ℓ/min.)

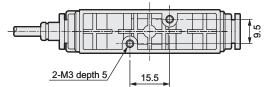



Dimensions (display separate type)

Display separate type, port size: Push-in Φ4, Φ6

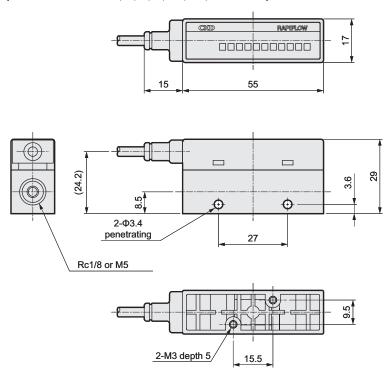
● FSM2-A*-H04/H06* (full scale flow: 0.5, 1, 2, 5, 10, 20, 50 ℓ/min.)




Model No.	Joint	(A) dimensions
FSM2-A*-H04*	Push-in Φ4	64
FSM2-A*-H06*	Push-in Φ6	65

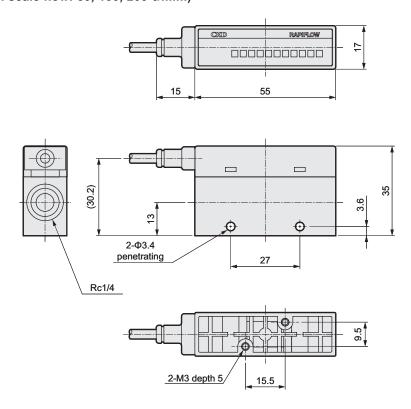
Display separate type, port size: Push-in Φ8, Φ10

● FSM2-A*-H08/H10* (full scale flow: 50, 100, 200 ℓ/min.)



Model No.	Joint	(A) dimensions
FSM2-A*-H08*	Push-in Ф8	70.6
FSM2-A*-H10*	Push-in Φ10	82.1

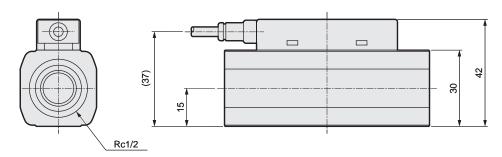
Dimensions (display separate type)

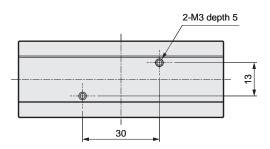

Display separate type, port size: Rc1/8, M5

● FSM2-A*-S06/SM5* (full scale flow: 0.5, 1, 2, 5, 10, 20, 50 ℓ/min.)

Display separate type, port size: Rc1/4

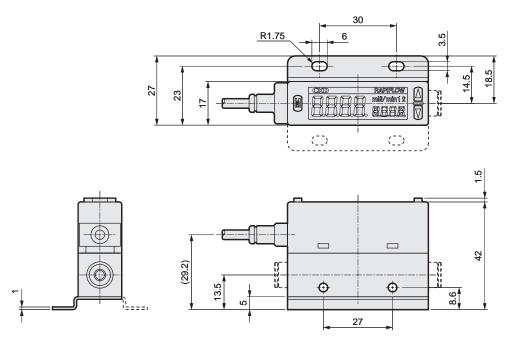
● FSM2-A*-S08* (full scale flow: 50, 100, 200 ℓ/min.)



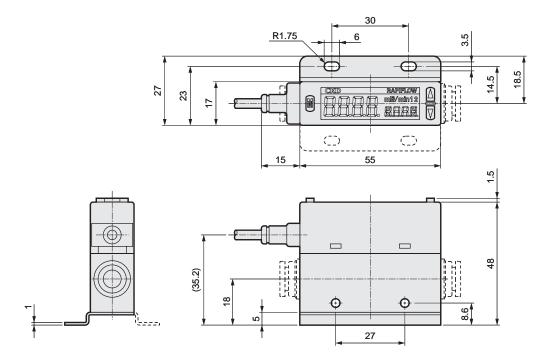

Dimensions (display separate type)

Display separate type, port size: Rc1/2

●FSM2-A*-A15* (full scale flow: 500, 1000 ℓ/min.)

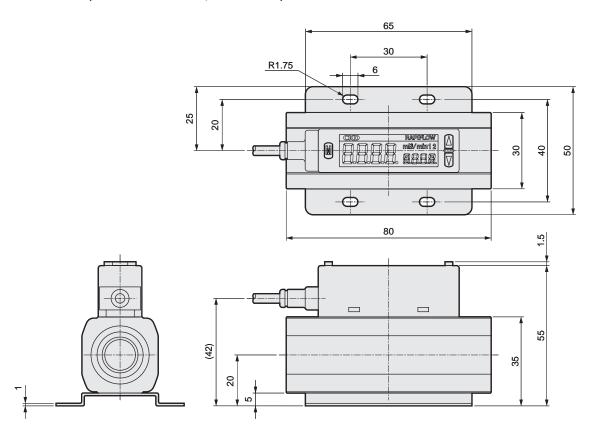


Dimensions with options (B: with bracket)

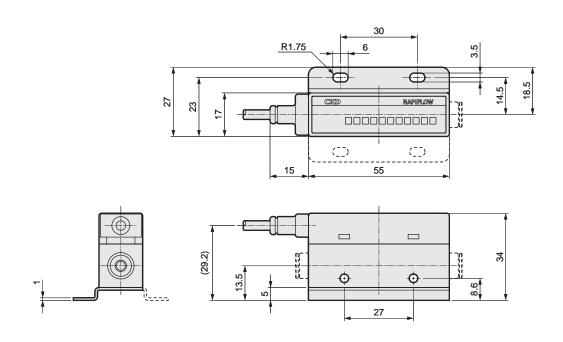

Display integrated type, port size: Push-in Φ4, Φ6, Rc1/8, M5

● FSM2-N/P*-H04/H06/S06/SM5*B (full scale flow: 0.5, 1, 2, 5, 10, 20, 50 ℓ/min.)

Display integrated type, port size: Push-in Φ8, Φ10, Rc1/4


● FSM2-N/P*-H08/H10/S08*B (full scale flow: 50, 100, 200 ℓ/min.)

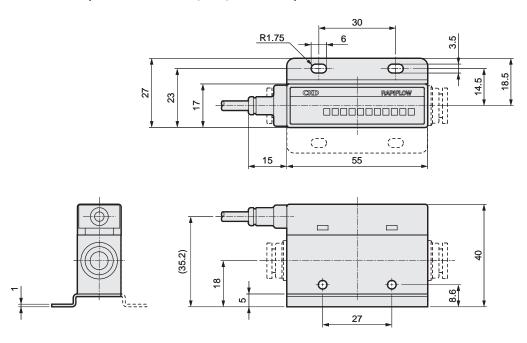
Dimensions with options (B: with bracket)


Display integrated type, port size: Rc1/2

● FSM2-N/P*-A15*B (full scale flow: 500, 1000 ℓ/min.)

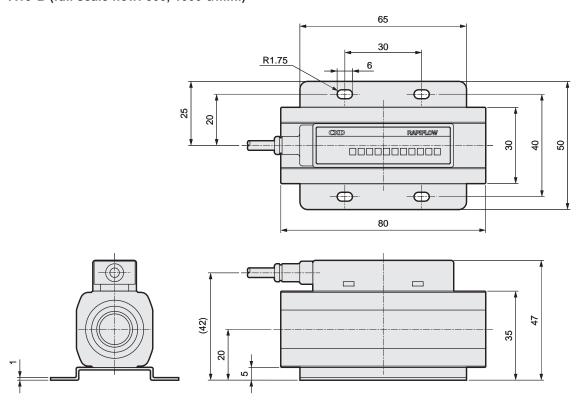
Display separate type, port size: Push-in Φ4, Φ6, Rc1/8, M5

● FSM2-A*-H04/H06/S06/SM5*B (full scale flow: 0.5, 1, 2, 5, 10, 20, 50 ℓ/min.)



FSM2 Series

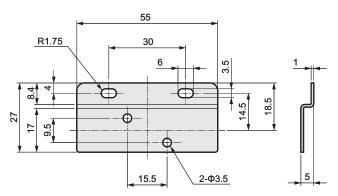
Dimensions with options (B: with bracket)


Display separate type, port size: Push-in Φ8, Φ10, Rc1/4

● FSM2-A*-H08/H10/S08*B (full scale flow: 50, 100, 200 ℓ/min.)

Display separate type, port size: Rc1/2

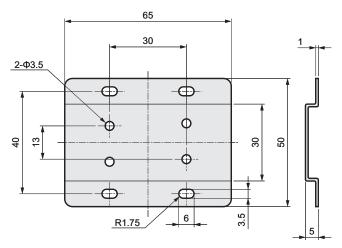
● FSM2-A*-A15*B (full scale flow: 500, 1000 ℓ/min.)



Optional dimensions

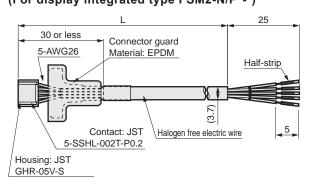
Bracket

Model No.: FSM2-LB1


(Full scale flow: 0.5, 1, 2, 5, 10, 20, 50, 100, 200 ℓ/min.)

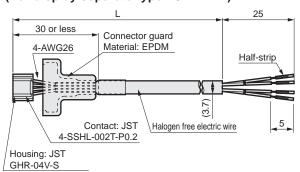
* 2 M3 (length 6mm) screws for fixing enclosed

Model No.: FSM2-LB2


(Full scale flow: 500, 1000 ℓ/min.)

* 2 M3 (length 6mm) screws for fixing enclosed

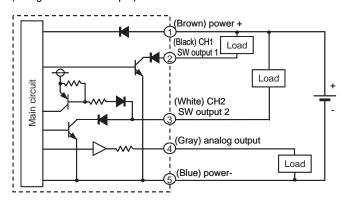
Cable option

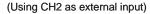

Model No.: FSM2-C51, C53 (For display integrated type FSM2-N/P*-*)

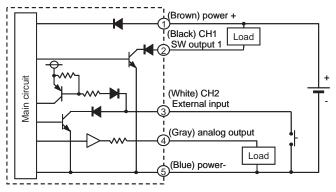
Terminal No.	Cable color
1	Brown
2	Black
3	White
4	Gray
5	Blue

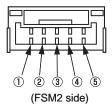
Model No.	L dimensions
FSM2-C51	1040±20
FSM2-C53	3040±20

Model No.: FSM2-C41, C43 (For display separate type FSM2-A*-*)

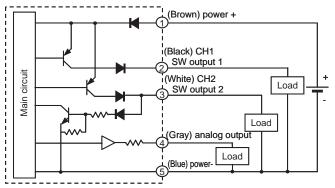

Terminal No.	Cable color
1	Brown
2	Black
3	White
4	Blue

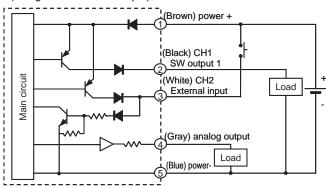

Model No.	L dimensions
FSM2-C41	1040±20
FSM2-C43	3040±20

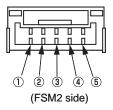

Examples of internal circuit and load connection


●FSM2-N *-* (display integrated type NPN output)

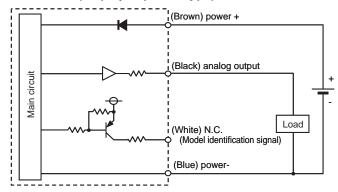
(Using CH2 as SW output)

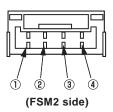



Terminal No.	Option cable color	Name	
1)	Brown	Power + (voltage output: 12 to 24V, current output: 24V)	
2	Black	CH1 (switch output 1: max. 50mA)	
3	White	CH2 (switch output 2: max. 50mA, or external input)	
4	Gray	Analog output $ \begin{tabular}{lll} \begin{tabular}{lll} Voltage output: 1 to 5V, load impedance 50k\Omega and over Current output: 4 to 20mA, load impedance 300\Omega or less$	
(5)	Blue	Power- (GND)	


● FSM2-P*-* (display integrated type PNP output)

(Using CH2 as SW output)

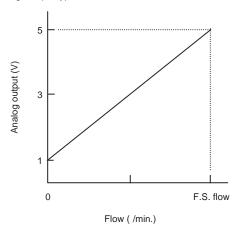


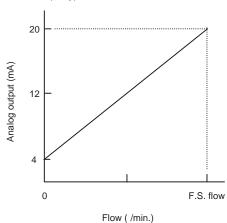


Terminal No.	Option cable color	Name	
1)	Brown	Power + (voltage output: 12 to 24V, current output: 24V)	
2	Black	CH1 (switch output 1: max. 50mA)	
3	White	CH2 (switch output 2: max. 50mA, or external input)	
4)	Gray	Analog output $ \frac{\text{Voltage output: 1 to 5V, load impedance } 50 k\Omega \text{ and over}}{\text{Current output: 4 to 20mA, load impedance } 300\Omega \text{ or less}} $	
5	Blue	Power- (GND)	

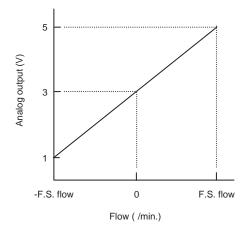
Examples of internal circuit and load connection

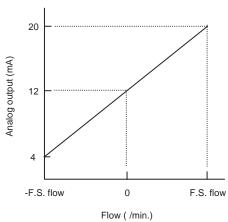
FSM2-A*-* (display separate type)



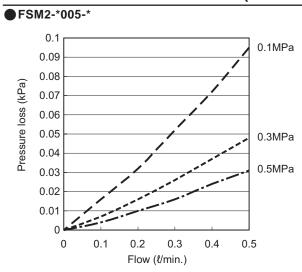

Termi	inal	Option cable	Name	
No		color		
1)	Brown	Power + (voltage output: 12 to 24V, current output: 24V)	
2)	Black	Analog output $ \begin{tabular}{ll} \begin{tabular}{ll} Voltage output: 1 to 5V, load impedance 50k\Omega and over Current output: 4 to 20mA, load impedance 300\Omega or less$	
3)	White	N.C. (Model identification signal; Not connected when used as discrete unit.)	
4)	Blue	Power- (GND)	

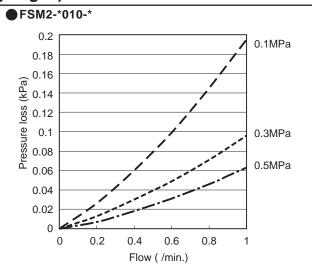
Analog output characteristics

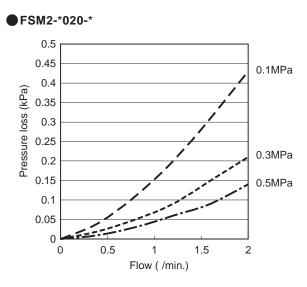

Voltage output type Flow direction: unidirectional

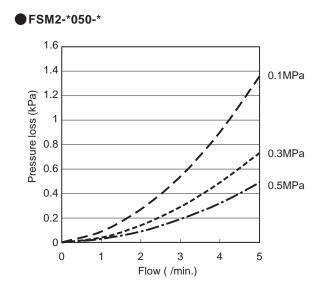

Current output type Flow direction: unidirectional

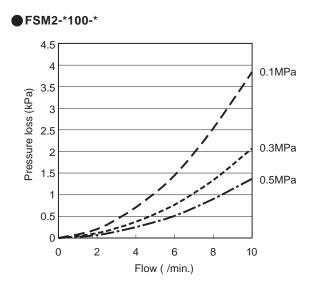
Voltage output type Flow direction: bidirectional

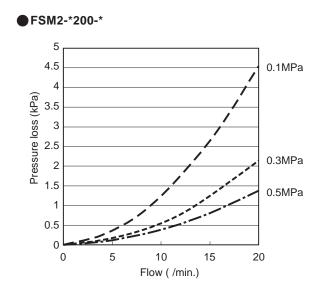

Current output type Flow direction; bidirectional

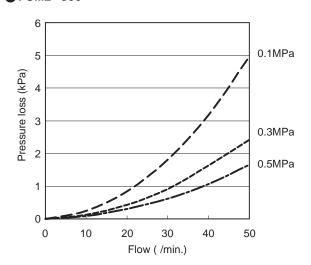


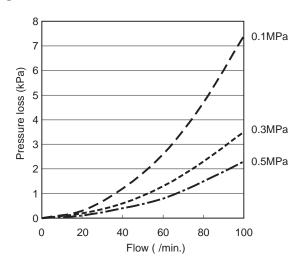

The integrated bidirectional display can be switched to unidirectional output by setting the button. Refer to page 29 for details.


FSM2 Series

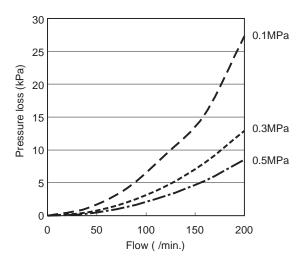

Pressure loss characteristics (air and nitrogen gas)

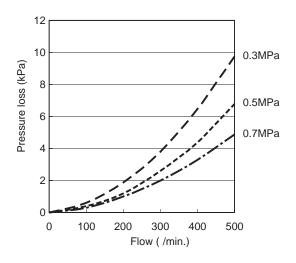


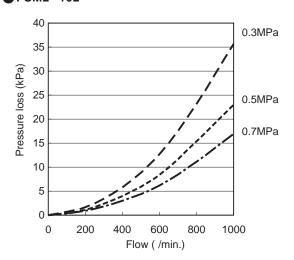


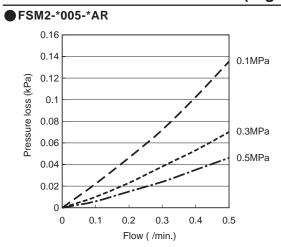


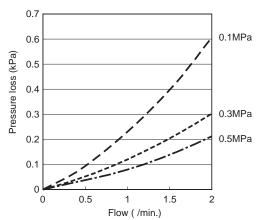
Pressure loss characteristics (air and nitrogen gas)

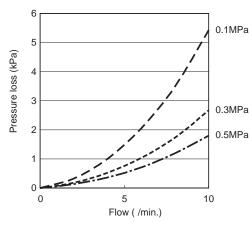


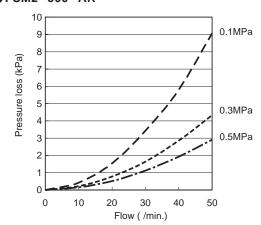

●FSM2-*101-*

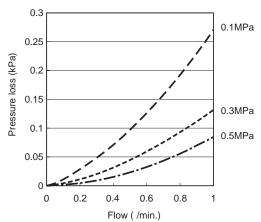

●FSM2-*201-*

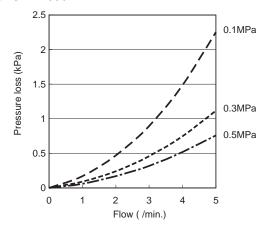

●FSM2-*501-*

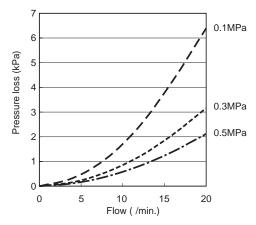

●FSM2-*102-*

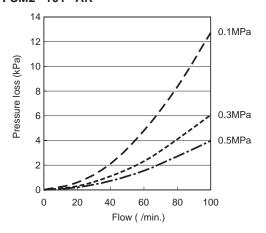

Pressure loss characteristics (argon)

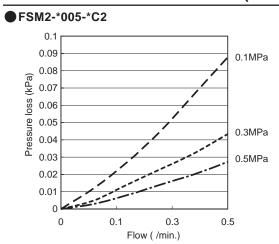

●FSM2-*020-*AR

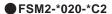

●FSM2-*100-*AR

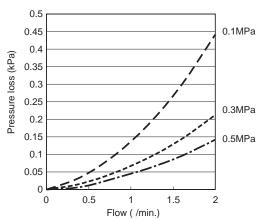

●FSM2-*500-*AR

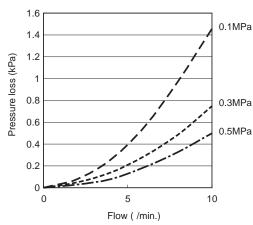

●FSM2-*010-*AR

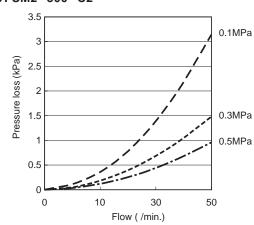

● FSM2-*050-*AR

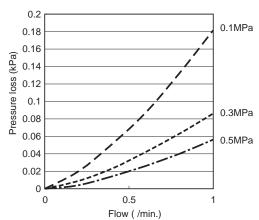

●FSM2-*200-*AR

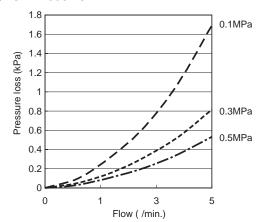


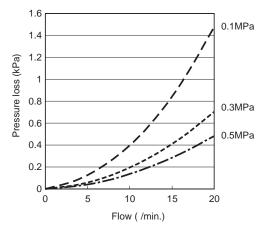

●FSM2-*101-*AR

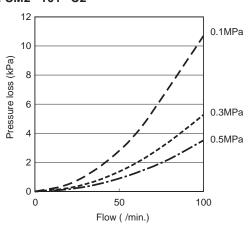

Pressure loss characteristics (carbon dioxide)



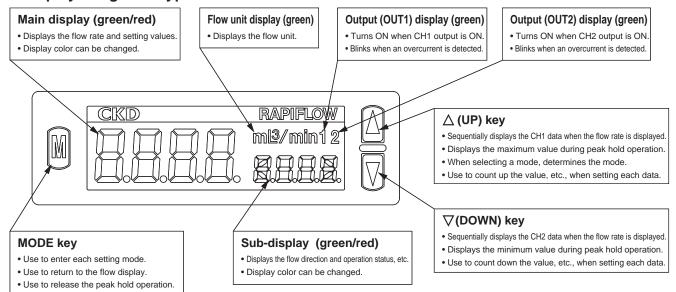

FSM2-*100-*C2


●FSM2-*500-*C2


●FSM2-*010-*C2


●FSM2-*050-*C2

●FSM2-*200-*C2



●FSM2-*101-*C2

Names and functions of display and operating sections

Display integrated type

Display separate type

	RAPIFI OW	
GAS: Air, N2	UZAU 10 ES 00 L/min 0 20 40 60 80 100	Flow bar display Turns ON according to the flow rate Blinks during an overcurrent.

The display above is for FSM2-A*F101-*.

Flow	Unidirectional type	Bidirectional type
0%F.S.	GAS: 0 20 40 60 80 100 Air, N2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAS: -100 -60 -20 0 20 60 100 Air, N2
+60%F.S. (Forward direction)	GAS: 0 20 40 60 80 100 Air, N2 0 0 0 0 0 0 0 0 0	GAS: -100 -60 -20 0 20 60 100 Air, N2
+120%F.S. (Forward direction) Blinks at overflow	GAS: 222, 442, 65, 189, 199 Air, N2 Air, N2	GAS: -100 -60 -20 0 22 1 60 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1
-60%F.S. (Reverse direction)	GAS: 20 40 60 80 100 Air, N2	GAS: -100 -60 -20 0 20 60 100 Air, N2
-120%F.S. (Reverse direction) Blinks at overflow	GAS: 20 40 60 80 100 Air, N2	GAS: -100, 769, 1720, 9, 20, 60, 100 Air, N2

Operation

Explanation of functions (display integrated type)

Some functions and settings are completed when the normal flow is displayed, and some after entering setting mode. The setting mode is divided into standard setting mode and detailed setting mode based on the frequency of use.

Regular operation

Descriptions	Explanation	Default setting
Instantaneous flow display	Instantaneous flow is displayed.	_
Integrated flow display	An integrated flow is able to be displayed. The switch output function includes one to turn the switch ON and OFF when the specified count value is exceeded, and an integrated pulse function that outputs a pulse after a set count value.	Instantaneous flow display
Peak hold	Maximum and minimum values for the flow rate within a set interval is displayed.	Peak hold OFF
Key lock	Key operations are disabled to prevent incorrect operation.	Key lock invalid
Error display	The status of errors is displayed when trouble or error occurs.	_

Standard setting mode

Descriptions	Explanation	Default setting
Switch output	Two-point switch output enables 7 operation patterns, and an operation stop can be set.	The switch is set off for both CH1 and CH2
Forced output	Switch output is forcibly turned on to check line connections and default operation of the input device.	_
Zero adjusting	Zero point deviation is corrected.	Adjusted value: 0

Details setting mode

Descriptions	Explanation	Default setting
Selection with flow direction (Selectable only with bidirectional type)	Set the flow direction. The direction is set to bidirectional, single forward direction, or single reverse direction.	Bidirectional setting
CH2 operation selection	Select the CH2 function. Select whether to use CH2 as switch output or as external input (count value reset/auto reference).	Switch output
Auto-reference	When CH2 is set to auto reference, the switch output's threshold can be given by external input or button operations. The threshold is changed automatically when the switch's threshold changes, such as when work changes.	Auto-reference OFF
Response time setting	Set the response time. The response time is set in 7 stages from 50 ms to 1.5 s. Chattering or incorrect operations caused by sudden changes in the flow or noise are prevented.	Response time: 50ms
Display speed setting	The digital display's update cycle is set in 3 stages from 250 ms to 1 s. Display blinking is minimized by lengthening the display update cycle.	Display speed: 250ms
Sub-screen setting	Set the sub-display section's display. The method used can be switched to flow direction, flow unit, or gas type.	Flow direction display
Display color setting	Set the display color. The display color for the normal display and switch output ON is set.	For both main and sub, Normal display: green Switch ON: red
Hysteresis setting	Set switch setting value hysteresis. Use this if flow pulsates and the switch chatters near the threshold.	Hysteresis: 1% F.S.
Flow unit setting	Select the display unit from the standard state or reference state. Standard state (ANR): Flow converted to volumetric flow at 20°C 1 barometric pressure Reference state (NOR): Flow converted to volumetric flow at 0°C 1 barometric pressure	Flow unit: ANR
ECO MODE setting	ECO MODE is selectable. If no button is pressed for one minute, the mode changes to ECO and the backlight turns off, minimizing current consumption.	ECO MODE OFF
Setting reset	Settings are set to the default.	_

(Note) The reference status display is a calculated (reference) value.

Switch output function

Switch output functions are selected from 7 switch operations based on the application. Functions can be used with both CH1 and CH2.

Operation pattern name	Explanation	Operation waveform	LCD display
Window operation (1) (ON within specified range)	Switch output turns ON within the specified range.	ON OFF ON Setting value OFF setting Flow	< Sub-display section >
Window operation (2) (ON out of specified range)	Switch output turns ON outside of the specified range.	OFF setting ON setting value Flow	
Hysteresis operation (1) (Small flow side ON)	Hysteresis is set randomly, and when the flow exceeds the designated level, switch output turns OFF.	ON OFF ON Setting value OFF setting Flow	-63-
Hysteresis operation (2) (Large flow side ON)	Hysteresis is set randomly, and when the flow exceeds the designated level, switch output turns ON.	OFF Setting ON setting value Flow	
Integration output (1) (ON when higher than integrated flow)	Switch output turns ON when higher than the set integration value.	ON OFF Integration setting value Integrated flow	5
Integration output (2) (OFF when higher than integrated flow)	The switch turns off when higher than the set integration value.	ON OFF Integration setting value Integrated flow	5-7-
Integrated pulse output	An integrated pulse is output at each preset integration value. Refer to specifications for details on the preset integration value. (Pages 1, 2)	ON OFF 40msec Integration value Integrated flow	PL5
Switch operation OFF	This is switch operation OFF status.		

Auto-reference function

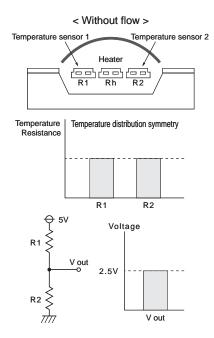
When CH2 is set to auto reference, the switch output's threshold can be given by external input or button operations. The threshold is changed automatically when the switch's threshold changes, such as when work changes. The input value is the flow rate when the external input is turned ON.

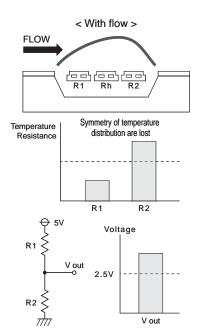
The CH2 switch setting is disabled during auto reference operation.

Input no.	Operation pattern name	Explanation	Operation waveform	LCD display
1 point	ON when higher than the input value	The switch turns ON when higher than the read value. (Threshold: Input value)	ON OFF Input Flow	< Main display > < Sub-display >
	OFF when higher than the input value	The switch turns OFF when higher than the read value. (Threshold: Input value)	ON OFF Input Flow	-P
	ON when higher than the value midway between two points	The switch turns ON when higher than the value midway between two points. (Threshold: (input 1 + input 2)/2)	ON OFF Input Input Flow	2-8
2 mainte	OFF when higher than the value midway between two points	The switch turns OFF when higher than the value midway between two points. (Threshold: (input 1 + input 2)/2)	ON OFF Input Input Flow	2-8
2 points	ON between two points	The switch turns ON between two read points. (Threshold 1: input value 1) (Threshold 2: input value 2)	ON OFF Input Input Flow	2-7
	OFF between two points	The switch turns OFF between two read points. (Threshold 1: input value 1) (Threshold 2: input value 2)	ON OFF Input Input Flow	2-6

Flow direction selection (integrated bidirectional display only)

With an integrated bidirectional display, the flow direction is set with button operations.


Flow direction	LCD display	Analog output characteristics
<bidirectional></bidirectional>	Main display > Minus display when direction is reversed. < Sub-display > Arrow changes according to flow direction.	thotho 3 12 F.S. flow 0 F.S. flow (Reverse direction) (/min.) (Forward direction)
<unidirectional (forward="" direction)=""></unidirectional>	< Main display > Sub-display >	(V) (mA) 5 20 Indino Boleuv 1 4 0 F.S. flow (/min.)(Forward direction)
<unidirectional (reverse="" direction)=""></unidirectional>	< Main display > < Sub-display >	(V) (mA) 5 20 thickness of the second of t


MEMO

FSM2 Series Measurement Principle

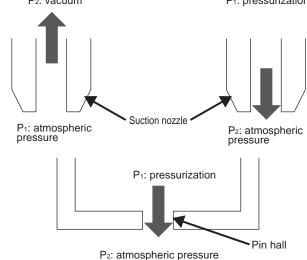
The FSM2 Series incorporates a platinum sensor chip (3 mm x 3.5 mm) machined with silicon micromachining. The sensor is thermally insulated from the silicon substrate. The heating capacity is extremely low, enabling high sensitivity with a high-speed response.

At the sensor, two temperature sensors are arranged with a heater in between. Platinum, which has a resistance that changes based on temperature, is used for the temperature sensor. When the heater is turned on and heated, the temperature distribution is symmetrical to the center of the heater if there is a flow. When flow is received, the symmetrical property of temperature distribution is lost, and temperature upstream from the heater drops, and that downstream rises. If flow is reversed, the temperature difference (resistance value difference) is reversed. A bidirectional flow is thus detected. This is suitable for detecting relatively small flows.

Flow sensor selection method

Use this as a guide to selecting the flow range when using a flow sensor to confirm suction and release with a suction nozzle or for leakage tests, etc.

The flow is calculated by the nozzle's (pin hole) effective sectional area, and the pressure difference inside and outside the P₁: pressurization P₂: vacuum


When P1 ≥ 1.89P₂ (sonic) $Q = 113.2 \times S \times P1$

●When P1 < 1.89P₂ (subsonic) $Q = 226.4 \times S \times \sqrt{P_2 (P_1-P_2)}$

Q : Flow ℓ/min.

P1 : Absolute primary pressure MPa P2 : Absolute secondary pressure MPa

S : Nozzle (pin hole) effective sectional area mm²

Example of calculation

The following table gives the flow calculation values when using $\Phi 0.1$ to 2 nozzle diameter and variable P2.

	P₁(MPa) Absolute	P ₁ (MPa)	P₂(MPa) Absolute	P ₂ (MPa)	Sonic				Flow calcu	lation valu	es (ℓ/min.))		
	pressure	Gauge pressure	pressure	Gauge pressure	/subsonic velocity	Ф0.1	Ф0.2	Ф0.3	Ф0.4	Ф0.5	Ф0.7	Ф1	Ф1.5	Ф2
	0.1013	0	0.0313	-0.07	Sonic velocity	0.090	0.360	0.810	1.440	2.250	4.411	9.002	20.254	36.007
	0.1013	0	0.0413	-0.06	Sonic velocity	0.090	0.360	0.810	1.440	2.250	4.411	9.002	20.254	36.007
u.	0.1013	0	0.0513	-0.05	Sonic velocity	0.090	0.360	0.810	1.440	2.250	4.411	9.002	20.254	36.007
Suction	0.1013	0	0.0613	-0.04	Subsonic velocity	0.088	0.352	0.792	1.408	2.200	4.312	8.800	17.249	35.202
เร	0.1013	0	0.0713	-0.03	Subsonic velocity	0.082	0.329	0.740	1.315	2.055	4.028	8.220	16.110	32.878
	0.1013	0	0.0813	-0.02	Subsonic velocity	0.072	0.287	0.645	1.147	1.792	3.512	7.166	14.046	28.666
	0.1013	0	0.0913	-0.01	Subsonic velocity	0.054	0.215	0.483	0.859	1.343	2.631	5.370	10.525	21.480
	0.1113	0.01	0.1013	0	Subsonic velocity	0.057	0.226	0.509	0.905	1.414	2.772	5.657	11.087	22.626
2	0.1213	0.02	0.1013	0	Subsonic velocity	0.080	0.320	0.720	1.280	2.000	3.920	8.000	15.679	31.998
tior	0.1413	0.04	0.1013	0	Subsonic velocity	0.113	0.453	1.018	1.810	2.828	5.543	11.313	22.174	45.252
inspection)	0.1613	0.06	0.1013	0	Subsonic velocity	0.139	0.554	1.247	2.217	3.464	6.789	13.856	27.157	55.423
	0.1813	0.08	0.1013	0	Subsonic velocity	0.160	0.640	1.440	2.560	4.000	7.840	15.999	31.358	63.996
(leakage	0.2013	0.1	0.1013	0	Sonic velocity	0.179	0.716	1.610	2.862	4.472	8.765	17.888	40.248	71.552
(lea	0.3013	0.2	0.1013	0	Sonic velocity	0.268	1.071	2.410	4.284	6.694	13.119	26.774	60.242	107.096
Blow	0.4013	0.3	0.1013	0	Sonic velocity	0.357	1.426	3.209	5.706	8.915	17.474	35.660	80.236	142.641
œ	0.5013	0.4	0.1013	0	Sonic velocity	0.445	1.782	4.009	7.127	11.137	21.828	44.547	100.230	178.186
	0.6013	0.5	0.1013	0	Sonic velocity	0.534	2.137	4.809	8.549	13.358	26.182	53.433	120.224	213.731

(CAUTION)

- If there is leakage in piping, etc., the actual flow will be larger than the calculated value. Take pipe leakage into account when selecting the
- If there is a section thinner than the suction nozzle diameter in piping, the flow will be restricted, and may be less than the calculated value. It may not be possible to check suction, etc.
- The effective section area is a guideline. If the nozzle is long and thin, the effective sectional area will be smaller than the nozzle's opening.
- The response speed is determined by the piping volume content between the flow sensor and the suction nozzle (pin hole). During highspeed detection, set the flow sensor near the suction nozzle, or reduce the volume content when possible.

Suction confirmation

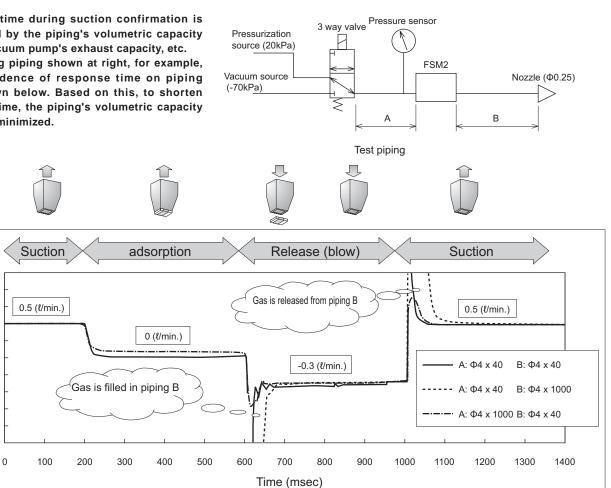
Response time

5.5 5

4.5

4

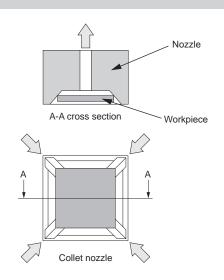
3.5 3


2.5

0.5

2 1.5

Analog voltage output (V)


Response time during suction confirmation is determined by the piping's volumetric capacity and the vacuum pump's exhaust capacity, etc. When using piping shown at right, for example, the dependence of response time on piping is as shown below. Based on this, to shorten response time, the piping's volumetric capacity should be minimized.

Dependency of response on piping

2 Using collet nozzle

A collet nozzle is often used when the workpiece to be picked up should not be directly seated against the nozzle. The collet nozzle is shaped like a pyramid so when the workpiece is picked up, a gap forms at the four corners. This causes leakage during pick up. If the effective sectional area of the piping, including valve and joints, etc., is smaller than the collet nozzle and workpiece gap (effective sectional area), flow is determined by the piping's effective sectional area, and the difference in flow during suction and when suction is disabled is low. In this case, suction is accurately confirmed by keeping the effective sectional area of piping larger than the effective sectional area of the gap between the collet nozzle and workpiece.

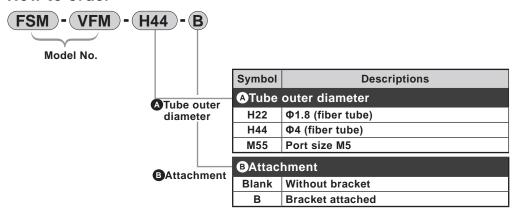
Small size flow sensor dedicated Miniature inline filter

FSM-VFM Series

Features

This inline filter is dedicated to the compact flow sensor FSM2 Series. The content volume is small so high-speed response is not obstructed when confirming suction.

- Miniaturized space-saving components
- Easy-to-replace element
- Polyamide resin, with outstanding chemical resistance, used for the body
- The transparent case enables element contamination to be checked from outside


Specifications

	Descriptions		FSM-VFM-H22 FSM-VFM-H44 FSM-VFM-M55						
Workir	g fluid		Clean air (JIS B 8392-1.1.1 to 5.6.2), compressed air (JIS B 8392-1.1.1 to 1.6.2) Note 1						
Applica	ble tube outer di	ameter	Φ1.8 (fiber tube)	Φ4 (push-in)	Port size M5				
Withsta	nding pressure	MPa	0.75						
Workin	g pressure range	MPa	-0.1 to 0.5						
Ambient	temperature range	°C	0 to 50						
Material Case				Polyamide					
Materiai	Element		Polypropylene, polyethylene						
Filtration rating µm 10									
Produc	t weight	g	5.2 9.5 4.2						
Recom	nended flow rate	ℓ/min.	10 ^{Note 2}						

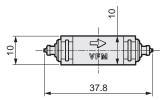
Note 1: Refer to the Compressed air quality classes according to JIS B 8392-1: 2003 on page 2.

Note 2: The pressure loss will increase when the flow exceeds 10ℓ/min., so use at 10ℓ/min. or less.

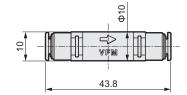
How to order

Bracket part model No.

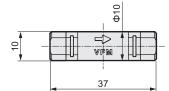
(Flat headed cross cut tapping screw M2.5 x 6: 1 pc.)

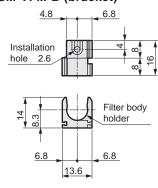

Maintenance part model No.

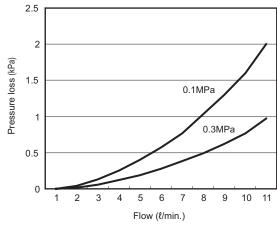
(Element: 5 pcs., joint fixing pin: 1 pc.)


FSM-VFM Series

Dimensions

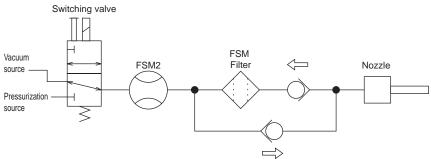

●FSM-VFM-H22


●FSM-VFM-H44


●FSM-VFM-H55

● FSM-VFM-B (bracket)

Flow characteristics (FSM-VFM-H44)


● When using the fiber tube, the pressure loss may increase depending on the piping conditions.

Cautions

This filter has an orientation.

When using this filter to confirm suction, etc., use a check valve to prevent the flow of dirt.

(Example of circuit)

■ Refer to Intro page 10 for the other precautions and element replacement methods.

Related products

Small size flow sensor FSM Series

Compact flow sensor 2 series compatible with various applications

FSM-H Series

- Compact, high speed and extremely small flow rate

 Extremely small flow at 1 mt/min. or less is detected at high speed
- Positive and negative pressure combination

FSM-V Series

■ Miniature and ultra high speed response

5ms quick response is possible

Catalog No. CC-687

Inline clean filter FCS500/FCS1000 Series

Suitable as final filter for clean applications (Air and inert gas)

- High accuracy filtration 0.01µm and removal ratio 99.99%

 The hollow fiber membrane enables a filtration accuracy of 0.01 µm and efficient removal of 99.99%.
- Long service life

Life has been increased to about five times that of the flat membrane.

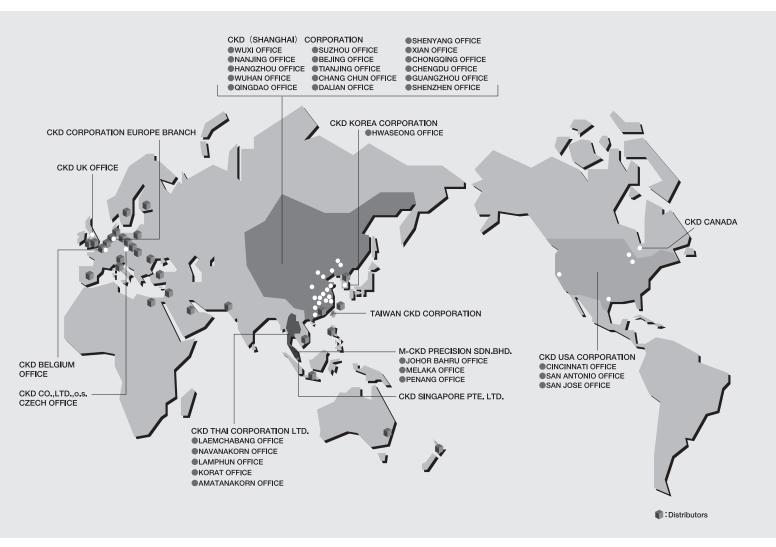
■ Compact, lightweight and large flow rate

The filtration area is 3 to 10 times larger than a flat membrane having the same capacity, so pressure loss is low even in high flows. The filter is compact and light-weight even for the same flow.

■ Oil-prohibited specifications

The entire part has been degreased and cleaned. All steps from assembly to packing are done in a cleanroom.

■ Easy maintenance


A transparent case is used for the resin type, enabling element contamination to be visually confirmed.

■ Wide variation

2 series, with flow 500 or 1000, are available. These are made of resin or stainless steel. Push-in joint, male or female thread piping are also available.

WORLD-NETWORK

CKD Corporation

 $\hfill \square$ OVERSEAS DPT. SALES DIV. 2-250 Ouji Komaki, Aichi 485-8551, Japan

PHONE +81-(0)568-74-1338 FAX +81-(0)568-77-3461

U.S.A

CKD USA CORPORATION

HEADQUARTERS

4080 Winnetka Avenue, Rolling Meadows, IL 60008 USA PHONE +1-847-368-0539 FAX +1-847-788-0575

EUROPE

CKD EUROPE BRANCH

De Fruittuinen 28 Hoofddorp 2132NZ The Netherlands PHONE +31-(0)23-5541490 FAX +31-(0)23-5541491

Malaysia

M-CKD PRECISION SDN.BHD.

HEADQUARTERS

Lot No.6, Jalan Modal 23/2, Seksyen 23, Kawasan, MIEL, Fasa 8, 40300 Shah Alam, Selangor Darul Ehsan, Malaysia PHONE +60-(0) 3-5541-1468 FAX +60-(0) 3-5541-1533

Thailand

CKD THAI CORPORATION LTD.

SALES HEADQUARTERS-BANGKOK OFFICE

Suwan Tower, 14/1 Soi Saladaeng 1, North Sathorn Rd., Bangrak, Bangkok 10500 Thailand PHONE +66-(0)2-267-6300 FAX +66-(0)2-267-6305

Singapore

CKD SINGAPORE PTE LTD.

705 Sims Drive #03-01/02, Shun Li Industrial Complex, 387384 Singapore

PHONE +65-6744-2623 FAX +65-6744-2486

Taiwan

TAIWAN CKD CORPORATION

1F., No.16, Wucyuan 5th Rd., Wugu Township, Taipei Country 248, Taiwan (R.O.C) PHONE +886-(0)2-2298-2866 FAX +886-(0)2-2298-0322 Website http://www.ckd.co.jp/

China

CKD (SHANGHAI) CORPORATION

 SALES HEADQUARTERS / SHANGHAI OFFICE Room 1903, 333 Jiujiang Road, Shanghai, 200001,

PHONE +86-(0)21-63602277 FAX +86-(0)21-63511661

Korea

CKD KOREA CORPORATION

Room No.1105, 11th FL, The Korea Teachers Pention B/L. 27-2, Yoido-Dong, Youngdeungpo-Gu, Seoul, 150-742, Korea

PHONE +82-(0)2-783-5201 \sim 5203 fax +82-(0)2-783-5204

The goods and their replicas, or the technology and software in this catalog are subject to complementary export regulations by Foreign Exchange and Foreign Trade Law of Japan.

If the goods and their replicas, or the technology and software in this catalog are to be exported, laws require the exporter to make sure they will never be used for the development or the manufacture of weapons for mass destruction.